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In a previous article, the authors showed that the DSN (7,1/2) convolutional code
could be decoded by a simple “quick-look” method that requires only two shift registers
of length 7 for the incoming hard-quantized channel symbols. Such a decoder is being
developed for Project Galileo to circumvent an incompatibility between the DSN and the
Tracking and Data Relay Satellite System (TDRSS), whose versions of the (7,1/2) code
differ in the order of the symbols in each pair. Because signal-to-noise ratios are high
during the near-Earth phase of the Galileo mission, quick-look decoding is feasible. The
present article derives design parameters and performance figures for the three functions
of the decoder: acquisition of node synchronization, generation of the decoded bits, and

estimation of channel quality.

l. Introduction

The quick-look decoder discussed here is proposed for a
1200 bit/s telemetry link that will operate while the TDRSS is
relaying the signal from the Galileo spacecraft. Figure 1 shows
the environment of the proposed decoder. At present, the
maximum likelihood (Viterbi) decoder of the TDRSS cannot
be used because it expects the symbols in each pair to be
reversed relative to the DSN convention. Our proposal is to
transmit the hard-quantized symbols (most significant bits)
from the 3-bit quantized symbols via the Ground Communica-
tions Facility (GCF) to the Mission Control and Computing
Center (MCCC) at JPL, where the quick-look decoder would
be implemented in software.

We explained the concept of quick-look decoding in Ref. 1.
Here, we give a concrete design of such a decoder for the

(7,1/2) code. Besides generating the decoded bits, the decoder
also acquires node synchronization and estimates channel
quality. Working from stochastic models for the channel
symbol errors and information bits, we choose the parameters
and compute the performance of the algorithms for these
services. The parity check bits discussed briefly in Ref. 1 play
a crucial role, analogous to the role of the branch metrics in
Viterbi decoding. A simple error correction method, not
anticipated in Ref. 1, lowers the bit error rate from 7p, to
133p§, where p,, is the symbol error rate.

The following display recapitulates the encoding and
decoding processes given in Ref. 1. All arithmetic is performed
modulo 2.
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Sequence
Quantity or vector Formal power series
1. Information bn B(x) = Z:bnx"
bit
2. Code vectors C1 =1011011 C1 x) =1 +x2 +x3 +x5 +x6
€, = 1111001 Cy(x) = 1+x+x7 +x%+x
_ n
3. Chartl’nelzl St San Sl.(x) = I, X
Symbo's = C()B(x),i=1,2
. * * * _ ¥ o 2
4, Received S1w San Si(x) = Zg X, 0= 1,
symbols
5. Inversion A1 =00101 Al(x) = x2 + x4
vectors A =111 A = 1+xex +x3+xt

6. Decoded bit b

B* _ * pn
" (x) = b, x

= A0S ) + A, (x)S; «)

7. Parity check p
bit

P(x) = ):pnx"

= ¢, (x)S:(x) + Cl(x)S;(x)

Reference 1 does not discuss symbol or bit errors. Here, we
let

E(x)=Ze, x" = 5/(x),- Sx),(=1,2)

D(x) = Zd x" = B (x)- B(x),

be the formal power series for the symbol errors

The identities
C,(x)C,(x) +C, ()Cy(x) =0,
A, ()C, (x) + Az(x)Cl(x) =1,

give the parity bits and decoded bit errors in terms of the
symbol errors:

P(x) = C2(x)E1 (x)+ C,(0)E,(x), )]
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D(x) = A,(x) E (x) + 4,(x) E, (x). €))
These formulas are basic for the analysis of the decoder.

In the DSN version of this code, the first symbols s, = are
inverted by the encoder, i.e., s, , (DSN)=s, +1 (mod 2), to
provide enough symbol transitions for the symbol synchron-
izer. The formula for computing the decoded bits (line 6 of
the display) is unchanged because A, has an even number (2)
of ones. The parity bits obtained from line 7 have to be
inverted because C, has an odd number (5) of ones. Each
parity bit p,, is the sum of 5 of the s, and 5 of the s,,. If
each s, is inverted then p,, is inverted.

il. Decoding With Correction of
Isolated Errors

The basic decoder described in Ref.1 does no error
correction. If symbol errors are rare, however, then most of
them can easily be recognized from the parity stream. If
E (x)=1, E,(x)=0 (ie., S;o is wrong and all other symbols
are right), then from Egs. (1) and (2) we have P(x) = C,(x),
D(x) = A, (x). The pattern C, = 1111001 appears in the parity
stream p,,, and 00101 in the bit error stream d,,. Thus, if we
see the C, pattern from time » - 6 to time n in the parity
stream, then, presuming that e, , ¢ =1, we correct the last
few decoded bits by adding the vector 4, to them, modulo 2.
Similarly, if we see C, in the parity stream we correct the
decoded bits by adding 4, . We formalize this as follows:

Correction Algorithm, Keep the last 7 parity bits and
decoded information bits in shift registers

P=(p, Py_sr-->Pp)
B = (b, (b, _o.-..b).

For each bit time »n
IfP=1011011 thenlet B* =B* + 1111100
If P=1111001 then let B* =B" + 0010100

Pass b:_ ¢ to the calling program.

This algorithm corrects all bit errors due to isolated symbol
errors; a symbol error at time # is said to be isolated if there
are no other symbol errors from time n - 6 to n + 6, inclusive.
Most symbol errors are isolated. Bit errors are caused by
“bursts” of two or more symbol errors. The derivation below
yields the following performance estimates: Assume that the



symbol errors are independent, with probability p, of occur-
ring. (This is the average number of symbol errors per symbol,
not per bit.) Then the bit error probability p, satisfies

133p2 (1 - 36p,) <p, <133p? 3)

for p, < 1072. We shall use the upper bound for computation.

Figure 2 plots the bit error rate (BER), p,;, of the
quick-look decoder, and the symbol error rate (SER), p,, as
functions of the bit signal-to-noise ratio £, /N,,. Formulas used
are Eq. (3), together with

p, = Q (VE,/N,),

where Q(x) is the probability that a standard Gaussian is
greater than x.

According to our present information about the Galileo-
TDRSS link, the E, /N, including receiver and demodulation
losses, will be 11.3 dB. From Fig. 2 we see that the quick-look
decoder margin is 0.5 dB for a BER of 105, and 3.3 dB for a
BER of 5 X 1073,

To derive the estimate (3), we introduce the following
assumptions and notation: At time zero, the decoder shift
registers are free of symbol errors. The symbol errors e, ,, e, ,,
n =1, are independent with probability p, of being 1 and
1 - p, of being 0. The notation e, designates the pair (e
€,,),ande, =0 meanse, , =0,e,, =0.

1n

Definition. A (symbol error) burst is said to occur between
bit times m and n (m < n) il

(1) e, #0,e, #0;
Q) e, =0m-6<k<m-1,n+1<k<n+6;

@B, ...,
to 0.

e,) contains no run of 6 consecutive e, equal

For 1 < m < 6 a burst can start at m provided all previous bit
times are free of symbol errors.

A burst having r symbol errors is called an r-burst. A 1-burst
is also called an isolated symbol error.

Every symbol error in the sequence e, belongs to some
burst. The correction algorithm corrects all bit errors due to
isolated symbol errors. We shall use Feller’s theory of recurrent
events (Ref. 3) to study the bit error rate due to longer bursts.

Definition. The event £ is said to occur at bit time n, n > 7,
if time n - 6 is the end of a burst. In other words, e, ¢ *0
ande, =0forn- 5S<k<n.

Each burst is associated with an occurrence of £. When &
occurs, the decoder shift registers are free from symbol errors
except in the last position. In the next bit time, e, _ is shifted
out of the registers and the situation is exactly like that at
time 1. Each time £ occurs, the process “starts from scratch.”

One can prove that £ is a persistent, aperiodic recurrent
event in the sense of Feller. The times between occurrences of
& are independent random variables with a common distribu-
tion. Let M denote the mean recurrence time, and let u,
denote the probability that £ occurs at time n. Then u,, > 1 /M
as n><°, Hence, we can interpret lim u, as the average
number of bursts per bit.

Furthermore, let § denote an arbitrary class of burst types
(a burst type is the finite sequence of zeros and ones that
make up a burst, considered without regard to when the burst
occurs), e.g., the 2-bursts, or the bursts of length 10 bit times.
Define £(B) like £ except that the type of the burst that ends at
time n - 6 must belong to B. Then £(B) is also a recurrent
event. Let u,(B) be the probability that £(8) occurs at time ».
If € is an upper bound for the lengths of the burst typesin §,
then u,,(8) = u(B), a constant, for alln > 2 + 12.

The bit error rate p 4 Of the decoder can now be written

Py = 20 PaP),
r=2

where p4(r) is the bit error rate due to r-bursts. (Recall that
p4g(1)=0.) As expected, for small p, the first term p,(2)
dominates the rest. There are 25 individual types of 2-bursts,
call them B,,...,B,, (in no particular order). They are
diagrammed below:

Ist symbol: 1 01 0000001

2nd symbol: 1°10°°" "’ 1000000’
10 1000000
01" ’0000001 ’
11 1000001

00’ " ""’0000000 ’

00 0000000
11°°°"°1000001 °
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The bit error rate due to 2-bursts is given by
25
p,2) = 25 xuB,),
k=1
where x,_ is the number of bit errors allowed by the decoder

when it encounters a burst of type §, .

Because the 2-burst types are at most 7 bits long, we have
u,(8) = u(P) for 1 <k <25 and n >19. Because each burst is
surrounded by 12 good symbols before and after, and contains
up to 12 good symbols in its interior, we have

m
u@,) = (1-p) *p,
where 24 <mk < 36.

Two examples of the computation of x, are shown below:

Burst type Parity errors Bit errors Y&
1001 1111001 00101
0000 1111001 00101
1110110001 00101101 4
10000 1111001 00101
00001 1011011 11111
111111001011 0010100
C; 001100111 5

In the second example, the pattern C, appears “by accident™
in the parity stream, starting at bit time 2. At bit time 8 the
correction algorithm, behaving as if an isolated first-symbol
error had occurred at time 2, adds 4, to the decoded bit shift
register. Notice that this spurious “correction” merely redistri-
butes the bit errors without increasing their number. This is
the only type of 2-burst in which C; or C, appears in the
parity stream.

We find that
25
> x, =133,
k=1
and hence

133p2 (1-p, Y% <p()<133p2 (1-p)* @
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We now estimate the contribution of r-bursts, 7 > 2, to the
bit error rate. The effect of the correction algorithm will be
neglected, for we just saw that it has no effect on the 2-burst
performance. An r-burst begins with the symbol pair (1,1),
(1,0), or (0,1). Then there are O to 5 good bit times, followed
by an (r - 2)-burst (for the (1,1) case) or an (r - 1)-burst (for
the other two cases). Therefore, the number of r-burst types,
y,, satisfies

v, 6yr_1+12y r=3

r-2’
Y, =2, y,=25.
The solution of this initial value problem is

y, =K, 2, +K, z,

where z, = 3 ++/21,2, =3~ +/21,K, = (273 - 15V/21)/504,
K,=Q73+ 154/21)/504. The rate of occurrence of each type
of r-burst is at most p: (1-p 8)24, and each of the r symbol

errors gives rise to at most 5 bit errors. Therefore,
r _ 24
p,(N<y, - 5r-p,(L-p)". (5)

Summing (5) over r > 3 and adding the upper bound for p4(2)
from (4), we obtain an expression that remains below 133 p2
for p, < 1072. The lower bound in (3) comes from the lower
bound in (4) for p4(2).

In view of the crudity of (5), we conjecture that the upper
bound in (3) remains valid even when the effect of the correc-
tion algorithm on r-bursts (r > 2) is included.

lll. Node Synchronization

The decoder receives the stream of corrupted symbols

* * * * * *
S11°5129 5210 5220 5310 5390+ -

and must decide how to pair them off. We use the method of
the up-down counter, also used in Viterbi decoders (Ref. 2). In
our case, the counter is driven by the parity bits. If a parity bit
is zero, the counter is decremented by 1;if a parity bit is 1,
the counter is incremented by k - 1, where k& is a fixed integer
2 2. The counter starts at zero and is not allowed to become
negative. If it ever reaches a preassigned threshold T then it is
reset to zero, the decoder lets one symbol go by, and the
decoder informs the calling program that a resync has
occurred.



The problem here is to choose k and 7. We must choose &
so that the average drift rate of the counter is negative for true
sync and positive for false sync. If sync is true, then Eq. (1)
holds. The counter rarely departs from zero if the SER is low,
because parity errors are rare. Eventually, though, it does
reach the threshold, causing a false alarm, a needless loss of
sync. We want the expected time to false alarm, £, to be
large. To be specific, we shall set T high enough so that E, is
more than 100 times as long as Galileo will be using the
TDRSS. To do this, it is necessary to assume a certain
cleanliness of the channel. Our symbol error assumption is

SER <6.13X 1073 6)

at which point £, /N, = 8 dB, BER = 5 X 1072 (see Fig. 2).

Let sync be false. Then one expects a relatively high density
of parity errors, which force the counter to rise quickly to the
threshold. For this to happen, however, it is essential that the
information bit stream contain enough information. If, for
example, the information bits are all zero, then most of the
corrupted symbols and parity bits are zero, and one cannot tell
true sync from false. Our information bit assumptions are
(1) the ratio of ones to total bits is between 5 percent and 95
percent, and (2) the ratio of transitions to total bits is at least
5 percent. Incorporating these assumptions into stochastic
models, we can estimate the expected time to resync the
decoder, E,, which we want to be small. The two quantities

Ey, and E, specify the performance of the sync algorithm.

The symbol error and bit assumptions define a design point,
from which the optimization procedure of subsection C below
yields the counter parameters

k=8, T=512.

The performance of the algorithm is
Q 1. _ .
Efa > 107 bits , E = 460 bits .

Our design point is negotiable; if the above choice is
unsuitable, the authors are willing to recompute & and 7.

A. True Sync

Let us assume that node sync is true and that the symbol
errors e, ,, €, ,.are independent with probability p, of being
one. Our aim is to get a lower bound on E,. We begin with a
preliminary remark. As we saw in section II, most of the
symbol errors are isolated, and each isolated symbol error

produces 5 parity errors. Therefore, the number of parity
errors n, in a given stretch of n, bits is approximately 5 times
the number of symbol errors n,. Moreover, Eq. (1) implies
that ny, < 5n, provided that the decoder shift registers are
initially clean, which, henceforth, we assume.

The up-down counter executes a-random walk with a
reflecting barrier at -1 and an absorbing barrier at 7. Since the
steps are not independent it is convenient to bound the
motion of this counter, call it Counter 1, by the motion of
another (fictitious) counter, Counter 2, that executes a ran-
dom walk with independent steps. Counter 2 operates each
symbol time as follows: If the next symbol is correct then the
counter is decremented by 1/2; if it is incorrect then the
counter is incremented by 5k~ (1/2). There is a reflecting
barrier at — 1/2 and an absorbing barrier at 7. Without barriers,
in n, bit times Counter 1 moves up by (k- l)np -
(ny, - np) = kn,-n, (probably negative), while Counter 2
moves up by [5k- (1/2)] n, - (1/2) 2n, - n,)=5kn, - n,. It
follows from our earlier remark that Counter 1 advances no
more than Counter 2, with or without barriers.

The difference equation method given in Chapter XIV of
Ref. 3 can be used to derive bounds on the mean first-passage
time of the absorbing barrier T by Counter 2. Using the
conventions of Ref.3, we consider a random walk on the
integers with a reflecting barrier at zero and an absorbing
barrier at . It advances by d with probability p and by ~1
with probability ¢ = 1 - p. The parameters are given by

a=2T+1, d=10k- 1, p=p,. (7

Let D; be the mean first-passage time for a walk that starts j
units above the zero-level. We assume, but do not prove, that
D; is finite. Then, it satisfies the difference equation

Dj=pDi+d+qD]._1+1, 1<j<a-1, ®)
with boundary conditions

D, = D,

b;

]

0, a<sj<a+d-1

Our aim is to find bounds for D, (see (16) and (17) below).
The characteristic equation of Eq. (8) is

pzf gzt =1, )
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which, provided g - pd # 0, has a simple root at 1 and just one
other positive root A. For any 4 and B, the sequence

j .
= j
Ei q_pd+A+B>\ 10)
satisfies
E; = pE].er+qEI._1 +1.
Solving for the 4 and B that make
E,=E , E =0, an
we get
1 DY
E = +j-a 12
i g (12)

The sequence -E; is convex. This, together with Eq. (11),
implies £; <O for j > a. Therefore, the difference 4; = D; - E;
satisfies

A = pA].+d+qA. R

, > 1<j<a-1, (13)

A=A (14)

a<j<atd-1.

4,20, (15)

We claim that 4; > 0 for 0<j <a +d - 1. To prove this,
let A; assume its minimum value m at j=r. Because of Eq.
(14) we can assume r=>1. Repeated use of Eq. (13) gives
A,a=m, A, =m, and finally A = m for some s such that
a<s<a+d- 1. This provesm=0.

Thus we have the result
D.>El., 0<j<a+td-1.

]

In particular

> 1 (A;_’ll —a). (16)
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A similar argument that replaces (11) by

leads to the upper bound

<
b, q-pd

1 (W:\__ll”l—(am—n). an

For design, we use the lower bound (16), plus (7) and the
bound

1
E,>3D,, (18)

which follows from the relationship between Counters 1
and 2.

B. False Sync

If node sync is false then we want the up-down counter to
rise quickly to the threshold 7. We can neglect symbol errors
because they produce more parity errors, which make the
counter rise even faster.

The encoder transmits the symbols serially in a stream
represented by the formal power series

S, (x*) + x5, (x) . (19)

The decoder sends the coefficients of 1, x2, x4, ...down the
first-symbol pipe, and the coefficients of x, x>, x%,... down
the second-symbol pipe. If sync is false, then the decoder sees
the stream whose formal power series is x times (19), or

xS, )+ x2S2(x2). (20)

Therefore, it sends xS,(x) down the first-symbol pipe, and
S, (x) down the second-symbol pipe. The parity stream comes
out as

fl

P(x) = C,(x)xS,(x) + C,(x)S, (x)

= xC,(x)? + €, (x)*] B(x)

K(x)B(x) D



where
K(x)= xC2(x2) +C, (%)
=1+x+x3 +x* +x% #2047 +x10 4 x12 4513,

(Note that f(x)* =f(x?) (mod 2) for any polynomial f(x).)
Each parity bit is the modulo 2 sum of 10 information bits.
The density of parity errors depends on the distribution of
zeros and ones in the information bit stream. We shall use two
models for the b,,.

Model B. Independent bits. Let the b,, be independent with
probability p, of being one, g, = 1 - p, of being zero (p, is
not a bit error probability). The density of parity errors, u,,, is
the probability that the sum of 10 of the b, is odd. By
considering the expansions of (g, +p,)'° and (g, - p,)*°® we
get

by =3 - @)l =iy, Q2)

Model T. Independent transitions. Let f,= b, + b,_,
(mod 2) be independent, with probability p, of being one, g, =
1 =p, of being zero. (The probability that b,, is one is 1/2.) Let
T(x) be the corresponding formal power series. Then

T(x) = Ztnx” = (1+x)B(x).

Since K(1) = 0 we have K(x)=(1 +x)L(x) and

P(x) = L(x)T(x),
where

L(x) = 1+x3+x° +x7 +x® +x° +x!?
Because L (x) has 7 nonzero terms, the density of parity errors
is now

R LECRT U 23)

Let p, = p, < 1/2. Then the bit streams in both models
carry the same amount of information, and Mpy < Hpp- Hence,
in order to be conservative about the upward drift of the
counter, we use model T to compute Hp. The average drift rate
of the counter is (k- 1) My = a- up) =ku, - 1, which must

be positive if the counter is to advance rapidly and steadily to
the threshold. We shall not be far wrong, then, if we estimate
the expected time to resync, E,_, by

rs?

T
E, = -1 (24)

where My = Mg

C. Choice of Sync Parameters

We wish to make a rational choice of the counter
parameters kK and T. Recall that our chosen design point is
defined by

6.13 X 1073

p, symbol error rate

p, = 0.05 bit transition rate.

~ The decoder would be used by the Galileo mission for at most

one hour, about 4 X 109 bits at 1200 b/s. Let us require that
the expected time to false alarm, Efa, be much greater, say
10° bits. Keeping p . and p, fixed we try a value of k. By trial
and error we find the least T such that the lower bound in
(18) for E, exceeds 10°. Then the expected time to resync,
E,, is obtained from Eq. (24). This gives £, as a function
of k. If k is too large, then the counter under true sync has less
negative drift; hence 7 must be made large in order to make
E;, >10%, and this makes E, large. If k is too small, then T
can be made smaller for a given £, but E, ¢ still becomes large
because the denominator in Eq. (24) is close to zero. There is a
k that minimizes E, ; for our design point we get k=8, T'=
511, E, = 471. The contribution from faise alarms to bit error
rate is £, /E;, >4.7X 1077,

Of course, if the channel is actually better than our design
point, then E, is much greater; for example, if p, = 1073 then
E,, >9 X 1022, On the other hand, if p, = 1072 then 1.1 X
105 < E;, < 1.9 X 10% (from the theory of Counter 2), so
that we should expect a false alarm every 2 minutes on the
average.

IV. Estimation of Channel Quality (SER)

Assume that node sync is true. As we pointed out earlier,
the number of parity errors n,, in 7, bits is about 5n,, where
n, is the number of symbol errors. Therefore, the symbol error
rate p, can be estimated from n, by

~ L (25)

99



To use Eq. (25), one could wait until n_ = Sn where nis a
fixed integer, say 25. Then the relative one-sigma error in the
estimator Eq. (25) is about 1/3/n. If p,, is low, say 105, then
symbol errors occur only once every 7 minutes; thus, it would
take too long to accumulate 25 of them. To accommodate a
wide range of SER, we propose the following scheme. Assume
that the decoder shares memory with a “main program.” The
locations N, Ny, and p, are available to both programs.
Initially, all three locations are set to zero.

The decoder accumulates the parity counts in n_ and bit
counts in n,. When n, reaches 5n, the decoder sets p, =
np/(IOnb), n, =0, ny =0, and begins counting again. We
suggest n = 25.

The main program, whenever it wants an SER estimate,
checks p,. If p,#0 it uses p,, as the estimate and sets p, = 0. If
p, = 0 it computes np/(IOnb) for itself as the estimate.

In other words, the main program takes the decoder’s most
recent update, if one has been provided since the main
program’s last inquiry; otherwise, the main program does the
best it can with the most recent bit counts. The decoder
updates p, once every n/(2p,) bits, on the average.

V. Conclusions

We have derived design parameters and performance of a
simple quick-look decoder for the DSN (7, 1/2) convolutional
code. The decoder uses parity check bits for correcting
isolated errors, finding node sync, and estimating the symbol
error rate. An up-down counter, driven by the parity bits, is
used to detect false node sync. The performance margin for
near-Earth Galileo telemetry is estimated to be 3.3 dB for a bit
error rate of 5 X 10-3,
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